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BBN THUNDER Model

1 Introduction

A THUNDER actuator is a composite of three thin layers, a metal base, a piezo-
electric wafer and a metal top cover, bonded together under pressure and at high
temperature with the LaRC SI polyimid adhesive. When a voltage is applied be-
tween the metal layers across the PZT the actuator will bend and can generate a
force. This document develops and describes an analytical model the transduction
properties of THUNDER actuators. The model development is divided into three
sections. First, a static model is described that relates internal stresses and strains
and external displacements to the thermal pre-stress and applied voltage. Second,
a dynamic energy based model is described that allows calculation of the reso-
nance frequencies, developed force and electrical input impedance. Finally, a fully
coupled electro-mechanical transducer model is described.

The model development proceeds by assuming that both the thermal pre-stress
and the piezoelectric actuation cause the actuator to deform in a pure bend in a
single plane. It is useful to think of this as a two step process, the actuator is held
flat, differential stresses induce a bending moment, the actuator is released and it
bends.

The thermal pre-stress is caused by the different amounts that the constituent
layers shrink due to their different coefficients of thermal expansion. The adhe-
sive between layers sets at a high temperature and as the actuator cools, the metal
layers shrink more than the PZT. The PZT layer is put into compression while the
metal layers are in tension.

The piezoelectric actuation has a similar effect. An applied voltage causes the
PZT layer to strain, which in turn strains the two metal layers. If the PZT layer
expands it will put the metal layers into tension and PZT layer into compression.

In both cases, if shear force effects are neglected, the actuator assembly will
experience a uniform in-plane strain. As the materials each have a different elastic
modulus, different stresses will develop in each layer and these stresses will induce
a bending moment. When the actuator is released from its flat configuration, the
differential stresses are relieved as the actuator bends.

2 Static Model

The first step in making a model of the THUNDER actuator is to find expressions
for the relationship between the the force and displacement developed when a DC
voltage is applied.

The actuator has three structural layers, a metal base, a PZT middle layer and a
metal top cover. Let these three layers be labeled
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Figure 1: The three layers of the actuator with the coordinates used in the model

c top cover
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A schematic of the layers of the actuator is shown in Figure 1 where the co-ordinate
system is chosen to be compatible with the IEEE Standard on Piezoelectricity[1].
The actuator is initially flat and oriented parallel to the 12 plane with the 3 axis
perpendicular to the plane of the layers. The 3 axis is also assumed to be the di-
rection of polarization of the PZT. The bottom surface of the metal base is aligned
with y = 0. The length of the actuator is l, the width is w, the coordinate of the
beam in the 1 direction is z and in the 3 direction is y.

Let the thickness of the three layers be ha, hb and hc. Introduce the auxiliary
variables ya,yb and yc which are the coordinates of the layer boundaries from the
lower surface of the metal base, and xa,xb and xc which are the coordinates of the
centerlines of each layer.

ya = ha
yb = ha + hb
yc = ha + hb + hc
xa = ya=2
xb = (ya + yb)=2
xc = (ya + yb + yc)=2

2.1 Simple Bending

To fully describe the elastic deformation of each layer we would need to specify the
three stresses T1,T2 and T3 and (using the indicial notation from the IEEE standard
[1]) the three shear stresses T4, T5 and T6 at every location in body of the actuator.
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BBN THUNDER Model 2.2 Assumed Strain Model

However, if we make the assumption that the layers are thin and that they are
unable to support stresses in the 3 direction, then T3 = 0. In the simple bending
model, we also assume that that actuator only bends in the 13 plane and that T2 =
0. In reality, both the thermal strain and the piezoelectric actuation will cause both
bending and stress in the 23 plane. We also neglect the effect of shear stresses, that
is assume that plane cross-sections of the actuator remain plane under bending, a
commonly used approximation that holds for moderate shear loads [3]. The one
dimensional pure bending model gives simple formulas that aid an engineering
understanding of the mechanisms and parameters of the actuator. An extension
that includes the out-of-plane stresses is possible if a little involved.

2.2 Assumed Strain Model

The strain in all layers due to bending, thermal pre-stress and PZT actuation will
be a combination of a uniform strain and a bending strain. We will assume that the
actuator bends with a radius of curvature R or equivalently with a curvature c =
R�1 and that the deformation is pure bending, i.e. that plane cross-sections remain
plane. (Positive curvatures are assumed, by convention, to be concave upward and
so we expect to have negative curvature under the thermal pre-stress.) The beam
will then have a neutral plane, a distance y0 from the lowest surface, at which the
strain is just the uniform strain S0. The strain in each layer is then a linear function
of its distance from the neutral plane.

S1(y) = S0 � (y � y0)=R (1)

The actuator will bend until the internal stresses are in equilibrium. For pure bend-
ing, the equations of elasticity are reduced to a single stress

T1 = Y S1

where Y is the Young’s modulus of the material.
Thermal strains are caused by the different coefficients of thermal expansion of

the three layers. Let these coefficients be �a, �b and �c. If the temperature at which
the adhesive layers in the actuator set is � degrees above ambient, then the thermal
strain induced in each layer is

S1 = ���
If a potential v is applied between the top metal layer and the metal base, then an
electrical field is applied across the PZT. In the simple model, this field is assumed
to be uniform and is given by

E3 = �v=hb
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If the PZT has been polarized in the 3 direction then an electrical field applied in
the 3 direction induces a strain in the 1 direction given by

S1 = d31E3 = �d31v=hb
where d31 is a piezoelectric coefficient of the material.

We now have three sources of strain, bending, thermal and piezoelectric. The
resulting strains in each layer must combine to give the induced strain of Equation
1,

S0 � y � y0
R

=

8><
>:

Ta=Ya � �a� 0 � y < ya
Tb=Yb � �b� + d31E3 ya � y < yb
Tc=Yc � �c� yb � y < yc

(2)

These equations can be rearranged to give the stresses induced by the thermal and
piezoelectric strains for a given radius of curvature R and neutral axis location y0,

Ta = Ya(�a� + S0 � y � y0
R

)

Tb = Yb(�b� � d31E3 + S0 � y � y0
R

) (3)

Tc = Yc(�c� + S0 � y � y0
R

)

or if we let ŷ0 be the location of the plane where S1(y) = 0,

ŷ0 = y0 +RS0 (4)

then

Ta = Ya(�a� � y � ŷ0
R

)

Tb = Yb(�b� � d31E3 � y � ŷ0
R

) (5)

Tc = Yc(�c� � y � ŷ0
R

)

Note that due the uniform strain induced by the thermal and PZT effects, the plane
of zero strain does not occur at the bending neutral axis y0.

To solve these equations we will need to find the two unknowns, R and ŷ0 and
to this end, we will use two equilibrium equations for the net force and net moment
at a given section of the actuator.

We consider first the static case, with no inertial forces. At any cross-section of
the actuator, the forces and moments must be in equilibrium. Thus

F =
Z ya

0

Tady +
Z yb

ya
Tbdy +

Z yc

yb
Tcdy = 0 (6)
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M = �
Z ya

0

Taydy �
Z yb

ya
Tbydy �

Z yc

yb
Tcydy = 0 (7)

where F and M are the force and bending moment per unit width of the beam. We
proceed by substituting the expressions for stress and performing these integra-
tions to get two equations with the unknowns R and ŷ0. As the algebra here can
get rather messy it is wise to proceed in steps, starting with the case of no thermal
or piezoelectric actuation and an applied moment Mb.

2.3 Applied Bending Moment

If a bending moment is Mb applied at both ends of the beam with � = E3 = 0, (S0
is also zero by definition for pure bending) then force equilibrium gives

�FR =
Z ya

0

Ya(y � y0)dy +
Z yb

ya
Yb(y � y0)dy +

Z yc

yb

Yc(y � y0)dy

= Ya

"
y2

2
� yy0

#ya
0

+ Yb

"
y2

2
� yy0

#yb
ya

+Yc

"
y2

2
� yy0

#yc
yb

= 0 (8)

and taking a representative term
"
y2

2
� yy0

#yb
ya

=
y2b � y2a

2
� (yb � ya)y0

= hb(xb � y0) (9)

therefore
FR = Yahaxa + Ybhbxb + Ychcxc

�(Yaha + Ybhb + Ychc)y0 = 0
(10)

and
y0 =

Yahaxa + Ybhbxb + Ychcxc
Yaha + Ybhb + Ychc

(11)

Expressions like this will be more compact if we introduce the indicial notation,
where a repeated index i in an expression indicates that the expression is summed
over all values of i. Thus

Yihi = Yaha + Ybhb + Ychc (12)

and
Yihixi = Yahaxa + Ybhbxb + Ychcxc (13)
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BBN THUNDER Model 2.3 Applied Bending Moment

We can then write an expression for the neutral axis under bending as

y0 =
Yihixi
Yihi

(14)

Now, if the applied bending moment is Mb and moments are taken about y = 0,

MbR =
Z ya

0

Ya(y � y0)ydy + � � �

= Ya

"
y3

3
� y2y0

2

#ya
0

+ � � � (15)

Again, taking a representative term
"
y3

3
� y2y0

2

#yb
ya

=
y3b � y3a

3
� y2b � y2a

2
y0

=
h3b
12

+ hbx
2

b � hbxby0 (16)

it can be shown that

MbR =
Yih

3

i

12
+ Yihix

2

i � (Yihixi)y0 (17)

The right hand side of this equation is the bending stiffness B of the composite
beam (B is the bending stiffness per unit width as Mb is the bending moment per
unit width.) Let

B =
Yih

3

i

12
+ Yihix

2

i � (Yihixi)y0

=
Yih

3

i

12
+ Yihix

2

i �
(Yihixi)2

Yihi
(18)

so that
R =

B

Mb

More manipulation will clarify the moment equilibrium equation if we introduce
the auxiliary variables wi = xi � y0 when,

B =
Yih

3

i

12
+ Yihiw

2

i (19)
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2.4 Thermal Pre-Stress

Now consider the case of a THUNDER actuator including the thermal pre-stress but
with no applied voltage. The equations for the three layer stresses reduce to

Ta = Ya(�a� � y � ŷ0
R

)

Tb = Yb(�b� � y � ŷ0
R

) (20)

Tc = Yc(�c� � y � ŷ0
R

)

We now need to substitute these equations into the force and moment equilibrium
equations to find R and ŷ0 The force equilibrium equation is

0 = Ya

"
y(�aR� + ŷ0)� y2

2

#ya
0

+ � � �
= Yihi�iR� + Yihiŷ0 � Yihixi (21)

If this expression is solved for ŷ0 we have

ŷ0 =
Yihixi � Yihi�iR�

Yihi
= y0 � Yihi�i

Yihi
R� (22)

To find the static strain induced by the thermal pre-stress, we can apply a bending
moment to the beam to counteract the thermal bending moment and flatten the
actuator. The component of the force equilibrium equation due to bending forces
and the neutral axis then is zero and comparing Equation 22 with Equation 4 we
have

S0;� = �Yihi�i

Yihi
� (23)

The negative stress implies that the thermal stress produces a uniform contraction
of the actuator as expected.

The moment equilibrium equation is now

0 = Ya

"
y2

2
(�aR� + ŷ0)� y3

3

#ya
0

+ � � �

= Yihixi�iR� + Yihixiŷ0 � Yih
3

i

12
� Yihix

2

i (24)

Substitution of ŷ0 from Equation 22 gives

(Yihixi�i � Yihixi:Yihi�i

Yihi
)R� =

Yih
3

i

12
+ Yihix

2

i �
(Yihixi)

2

Yihi
(25)
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or
M� =

B

R
= (Yihixi�i � Yihixi:Yihi�i

Yihi
)� = Yihiwi�i� (26)

Note that the bending stiffness B is independent of the effect of the thermal pre-
stress. The same expression for Mb can be found by solving for the bending mo-
ment required to keep the actuator flat. The moment equation for zero curvature
is

M� = Ya

"
y2

2
(�a� + S0)

#ya
0

+ � � �

= Yihixi�i� + YihixiS0 (27)

and when the static thermal strain is substituted we have the same result as before.

2.5 Piezoelectric Actuation

The effect of a voltage applied to the PZT layer is to strain that layer which results
in a compressive stress in the PZT and tensile stresses in the metal layers. By a
similar reasoning to that used in the previous section, the bending stiffness of the
actuator will not change under this load. We can calculate the static strain and the
effective bending moment of the piezoelectric effect directly by assuming that an
applied moment keeps the actuator flat and by solving for the required moment.
The stresses in a flat actuator with a piezoelectric actuation are then

Ta = YaS0

Tb = Yb(S0 � d31E3) (28)
Tc = YcS0

the force equilibrium equation is

0 = Ya [S0y]
ya
0
+ Yb [(S0 � d31E3)y]

yb
ya
+ Yc [S0y]

yc
yb

= YihiS0 � Ybhbd31E3 (29)

and therefore the uniform piezoelectric strain is

S0;E =
Ybhbd31E3

Yihi
(30)

and the piezoelectric bending moment is

Mp = Ya

"
y2

2
S0

#ya
0

+ Yb

"
y2

2
(S0 � d31E3)

#yb
ya

+ Yc

"
y2

2
(S0)

#yc
yb

8



BBN THUNDER Model 2.6 Displacement

AA
AA

cantilevered simply supported

Figure 2: Cantilevered and Simply Support Actuator Configurations

= YihixiS0 � Ybhbxbd31E3

= (
Yihixi
Yihi

� xb)Ybhbd31E3

= (y0 � xb)Ybhbd31E3

= �Ybhbwbd31E3 (31)

2.6 Displacement

There are many possible ways of mounting and loading a THUNDER actuator, each
of which will result in a slightly different force/displacement characteristic. For
the purposes of modeling, we assume that the actuator is mounted in one of two
ways, either simply supported when we will be concerned with displacements at
the center of the actuator or cantilevered when we will be concerned about dis-
placements and forces at the free end. Figure 2 illustrates these cases. An advan-
tage of considering these cases is that the curvature is uniform along the length of
the actuator under the induced moments of thermal and piezoelectric actuation.
Other boundary conditions, such as clamped ends, introduce reaction moments
that make the curvature a function of location. In addition, these reaction mo-
ments will result in reduced displacements of the actuator and so are undesirable
in practice.

The displacement of the actuator is a function of the induced curvature. For
small displacements we shall assume that this function is linear. THUNDER ac-
tuators can exhibit large displacements compared to their length and it may be
necessary to use the nonlinear function for accurate predictions. However, in most
cases the linear function will give sufficient accuracy.

The curvature c is given in terms of the actuator displacement u and location z
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BBN THUNDER Model 2.7 Accounting for the Adhesive Layers

by

c =
1

R
=

d2u=dz2

[1 + (du=dz)2]3=2
(32)

and for small values the linear approximation is

c � d2u

dz2
(33)

The displacement of the cantilevered actuator can then be found as a function of z

u(z) =
z2

2R
(34)

and the displacement at the free end of an actuator of length l is

uCF =
l2

2R

For the simply supported actuator

u(z) =
z2 � zl

2R

and so the displacement at the center is

uSS = � l2

8R

In order to find the blocked force developed by the actuator, we could apply the
force necessary to return the actuator to a neutral displacement. Alternatively, we
can use the principle of virtual work (in the static case) or Hamilton’s principle (in
the dynamic case) to solve for both the force and the electrical parameters, charge
and current. These models are developed in the next section.

2.7 Accounting for the Adhesive Layers

In the development so far we have neglected the effect of the adhesive layers be-
tween the metal base and cover layers and the PZT layer. In thin THUNDER ac-
tuators these layers can make up a substantial component of the total thickness.
Although the adhesive layer is thin and relatively compliant and so does not sup-
port significant in-plane stress, it does separate the active layers, moving them
further from the bending neutral axis and so can affect the bending stiffness and
induced moments. Fortunately, these layers are simple to include in the model.
Expressions such as Equation 19 for the bending stiffness are evaluated for the five
layers, metal base, adhesive, PZT adhesive and metal cover rather than just the
three original layers. This and other expressions can be used assuming summa-
tion over the appropriate indices for the five layers.
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3 Dynamic and Energy Based Modeling

The next step in the model development requires the introduction of dynamics.
The aim is to find expressions for the resonance frequency, the developed force
and the electrical input impedance. The most useful approach is to use energy
based modeling using the principle of virtual work or Hamilton’s principle. This
approach is also more convenient when including effect of more complicated ac-
tuator geometries as it leads to a quicker formulation of the appropriate relation-
ships.

3.1 Energy and the Hamiltonian

The THUNDER actuator is a coupled electro-mechanical system. As magnetic ef-
fects can be ignored, Hamilton’s principle applied to the actuator can be written
[2] Z t2

t1
[�(T � U +W ) + f�u� q��]dt = 0 (35)

where U is the mechanical potential energy stored in the actuator, T is the stored
kinetic energy and W is the stored electrical energy. f is the force applied at a
location where the displacement is u and q is the charge applied at a location where
the electrical potential is �. The stored energies are functions of S the full vector of
strains in a given layer, T the full vector of stresses, E the full vector of electrical
field strengths, D the full vector of electrical displacements (charge/area) and _u
the vector of local mechanical velocities.

T =
1

2

Z
V
� _u0 _u dV (36)

U =
1

2

Z
V
S
0
T dV (37)

W =
1

2

Z
V
E

0
D dV (38)

The prime denotes a transpose and the integrals are taken over the volume of the
actuator.

3.2 Stress and Strain

For a general piezoelectric material the electrical displacement and the mechanical
stress can be written as linear functions of the applied electrical field and mechan-
ical strain [1]

T = c
E
S � e0E (39)

D = eS+ �SE (40)
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The parameters in this equation are the matrix of material compliances at a fixed
field cE , the matrix of clamped dielectric constants �S and a matrix of piezoelectric
constants e.

For the simple bending model considered so far these equations reduce to func-
tions of the stress and strain in the 1 direction and the electrical field and displace-
ment in the 3 direction.

T1 = Y S1 � Y d31E3 (41)
D3 = �S

33
E3 + Y d31S1 (42)

The first of these equations is familiar from Equation 29.

3.3 Generalized Variables

The analysis proceeds by finding expressions for the external variables displace-
ment, force, charge and voltage and the internal variables S1,T1, E3 and D3 in terms
of a set for generalized variables that meet the requirements of the boundary con-
ditions of a given actuator. If, as is common in practice, we are concerned about
the low frequency response of the actuator below its first bending resonance fre-
quency, then a single displacement variable is sufficient. For this case, and with
cantilevered or simply supported boundaries, a suitable choice of displacement
variable is the curvature c = R�1. The voltage variable is simply the voltage ap-
plied to the terminals v. We can then write the various internal and external vari-
ables in terms of c and v. The two independent internal variables are S1 and E3

S1 = c(y � ŷ0) = cy0 (43)

E3 =

( �v=hb in the PZT layer
0 elsewhere (44)

The independent external variables will depend on the choice of boundary condi-
tions. Let u(z) be the displacement of the actuator as a function of location. For the
cantilevered actuator

u(z) = c �CF (z) = cz2=2

and for the simply supported actuator

u(z) = c �SS(z) = c(z2 � zl)=2

3.4 Transducer Equations

The transducer equations are a pair of coupled dynamic equations that relate the
the two electrical variables voltage v and the charge q to the mechanical variables

12



BBN THUNDER Model 3.4 Transducer Equations

displacement u and force f . They can be obtained by variational methods by sub-
stitution of the equations given above into the expressions for energy and taking
variations by Equation 35. The method, described in more detail in a paper by
Hagood et al. [2], results in the equations

M�c +Kc��v = �(z0)f

�c+ Cv = q (45)

where M is a mass, K is a stiffness, C is a capacitance and � is a transduction
constant each of which is found by integrating energy expressions over the volume
of the actuator. In contrast to the previous section the following expressions now
include the width, w, and the area, A = lw, of the actuator.

K is simply a reformulation of the bending stiffness of Equation 19.

K = A
Z
y
Y y02dy = AB (46)

C is the clamped capacitance

C =
�S
33
A

hb
(47)

� is a reformulation of the PZT actuation moment of Equation 31

� =
Z
PZT

A
Ybd31
hb

y0dy = A(y0 � xb)Ybd31 (48)

The mass M and the function �(z0) depend on the boundary conditions and the
location of the applied force.

M =
Z
V
��2(z)dV = �ihiw

Z l

0

�2(z)dz

where �i is the density of the layer i and �(z) is chosen appropriately for the
boundary conditions. �0 = �(z0) is the value of the appropriate � at the location
z0 at which the force f is applied. For the cantilevered actuator

MCF = �ihiwl
5=20 = ml4=20

where m is the mass of the actuator, and if the force is applied at the free end

�CF (z0) = l2=2

For the simply supported actuator

MSS = �ihiwl
5=120 = ml4=120

and if the force is applied at the center

�SS(z0) = �l2=8

13
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3.5 Resonance Frequencies

The first resonance frequency of the actuator is given by

!1 =
q
K=M

and so for the cantilevered actuator

wCF =

s
20AB

�ihiwl5
=

4:472

l2

s
B

�ihi

and for the simply supported actuator

wSS =

s
120AB

�ihiwl5
=

10:95

l2

s
B

�ihi

If the concern is model accuracy around the first resonance frequency of the actu-
ator, An alternative choice of generalized displacement variable is the amplitude
of the first mode of vibration. The first mode shape is then be used to calculate the
integrals for M and K and we obtain the slightly lower first resonance frequencies
[4]

wCF =
3:52

l2

s
B

�ihi

wSS =
9:87

l2

s
B

�ihi
(49)

If the concern is the behavior of the actuator above the first resonance then the
model should use a set of generalized displacement variables corresponding to
the amplitudes of the modes of vibration that cover the frequency range desired.

3.6 Alternate Formulations

If the excitation is sinusoidal with frequency ! and using the relationship u = c �0
then the transducer equations, Equations 45 can be written

(K � !2M) u��0� v = �2

0
f (50)

� u+ �0C v = �0 q (51)

In this form of these equations the input variables are f and q and that the output
variables are u and v. There are four possible alternative forms of the transducer
equations depending on the choice of inputs and outputs.
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Inputs Outputs
force, charge displacement, voltage
force, voltage displacement, charge
displacement, charge force, voltage
displacement, voltage force, charge

In total there are four possible equations relating each of the three triplets of vari-
ables (u; v; f), (u; v; q), (f; q; u) and f; q; v). The first two of these are given by Equa-
tions 50 and 51. Some algebra gives the other two which are

�2

0
C f + �0� q = ((K � !2M)C +�2) u (52)

��0 f + (K � !2M) q = ((K � !2M)C +�2) v (53)

4 Model Extensions

4.1 Plate Bending

The analysis used so far has used a beam model of the actuator. This assumes that
the effect of the PZT is to bend the actuator in the 13 plane only (Figure 1). In reality,
both the thermal pre-stress and the PZT actuation cause three dimensional strain,
with bending in both 13 and 23 planes. A full analysis of this behavior is possible
but for engineering purposes it is sufficient to modify the beam model by suitable
approximations to account for these three dimensional effects.

The first effect of note is perhaps slight. The bending stiffness of equation 19
was derived assuming the the stress T2 = 0. Thin plate theory allows for stresses
in the other plane, results in a bending stiffness modified by the Poisson’s ratio �.
Of course, each material will have a different value of � and the full analysis of the
multi-layered thin plate will take this into account. However, a good engineering
approximation is to assume that they are all equal to their average weighed by
the thickness of the layers. Let � be this average Poisson’s ratio, then the bending
stiffness of the multi-layered plate is

Bjplate =
B

(1 � �2)
(54)

As � is usually about 0:3, the effect is to raise the stiffness by about 10% and the
first natural frequency by about 5%.

4.2 Static Shell Curvature

Of perhaps greater significance is the effect of static curvature on the bending stiff-
ness. It is well known that curvature in the 23 plane will increase the stiffness of
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BBN THUNDER Model 4.3 Circular Actuators

a plate in the 13 plane and vice versa. The curvature of the thermal pre-stress has
the effect of stiffening the actuator for the PZT induced bending, raising the first
resonance frequency and reducing the displacement. Again, a full analysis of this
effect is possible, but a useful engineering approximation is fortunately available.
The theory of shallow spherical shells [6] gives a formula for the increase in natural
frequency of a curved homogeneous plate as a function of the radius of curvature
R.

!2

njshell = !2

njplate +
Y

�R2
(55)

where Y is the young’s modulus, � is the density. The equivalent bending stiffness
is then

Bjshell = Bjplate +
Y hl4

�2R2
(56)

where the constant �2 depends on the choice of boundary conditions. A major
complication occurs when we wish to calculate the shell bending stiffness due to
thermal pre-stress as the radius of curvature R itself depends on the bending stiff-
ness. By equation 26

R = B=M� (57)

where M� is the thermally induced bending moment. We thus have a cubic equa-
tion which must be solved for the shell bending stiffness

B3jshell = B2jshellBjplate +
Y hl4M2

�

�2
(58)

4.3 Circular Actuators

A full analysis of a circular actuator from first principles is possible using a similar
analysis to that used above for beam and plate actuators. However, as in the pre-
vious section, it is sufficient for engineering purposes to modify the plate model
by suitable approximations.

It was shown in sections 2.4 and 2.5 that the effect of both thermal pre-stress
and piezoelectric actuation is to induce a bending moment. An equivalent effect
to the moments induced by distributed action of thermal and piezoelectric strain,
can be achieved by applying an equal line moment to the edge of the plate. Thus,
if the rectangular plate is transformed into a circular plate, the line moments at
the edges are transformed into a line moment around the circumference and the
formulae of equations 27 and 31 are still valid. As a circular disk certainly does
not support plane bending, the appropriate bending stiffness is that of equation
54. The displacement at the center of a simply supported disk of radius a with a
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line moment M0 applied on its circumference is [5]

u0 =
M0a

2(1 � �2)

2B(1 + �)
(59)

and the first resonance frequency is given by [6]

!1 =
4:98

a2

s
B

�h
(60)

The mass term in the transducer model can be found by integrating the square of
the generalized displacement function �2(r) over the area of the disk where

�(r) = (r � a)(r + a)=2 (61)

and so
M =

Z
A
�ihi�(r)dA = �ihia

62�=24 = ma4=12 (62)

and the other parameters can be readily derived.

5 Equivalent Circuit Transducer Model

It was demonstrated in previous sections that the parameters of the transducer
model depend on the particular boundary conditions chosen for a given applica-
tion. In practice, the pure boundary conditions of the analytical model are difficult
and impractical to implement and the actuator mounting is chosen to meet the me-
chanical requirements of the application while attempting to optimize one or more
performance variables. For example, if the THUNDER actuator is to be used as a
sound source, a mechanical requirement is that a good air seal is obtained from the
front to the back of the actuator and that this seal does not fail or fatigue during
operation. Good acoustic performance requires that the volume displacement of
the actuator at the design frequency be optimized. If the actuator is to be used as
a source of force, the mounting must allow free movement while transmitting the
force to the supporting structure.

Another major practical effect is the static curvature caused by the thermal pre-
stress which occurs both across the length and width. This shell curvature will
stiffen the actuator leading to higher resonance frequencies and lower displace-
ments. The actual curvature of an installed actuator is hard to accurately predict
as it depends on both the details of the mounting and the manufacturing process
of the actuator. Small variations in each can lead to large variations in resonance
frequency.
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Figure 3: An equivalent circuit for a THUNDER actuator

Thus while the analytical model is useful for understanding the relationship be-
tween design variables (material choices and dimensions) and performance vari-
ables (force and displacement per volt or ampere), it can only provide approximate
predictions of actual performance variables. An experimentally based model is
then useful for designing practical actuators and comparing their performance.

When designing a THUNDER actuator for a particular application, it is useful
to have a transducer model that relates the electrical input power variables v and
i to the mechanical input power variables f and _u using parameters that can be
experimentally measured and hence allow candidate designs to be compared. A
useful tool for this purpose is the equivalent electrical circuit shown in figure 3.

In the center of the diagram is an ideal transformer with a ‘turns ratio’ of N .
N is the key transduction constant that relates input current to velocity (or charge
to displacement). Turning the circuit around would give the sensor relationships
of volts per force and charge per displacement. Ce represents the electrical capac-
itance for the stress free actuator. Cm represents the mechanical compliance for a
open circuit actuator

Solving for the circuit variables gives the transducer equations in terms of N ,
Ce, Cm and Mm.

(1� !2(Cm +N2Ce)Mm) u�NCe v = (Cm +N2Ce) f (63)
NCe u+ CmCe v = (Cm +N2Ce) q (64)

Cm f +N q = (1� !2CmMm) u (65)
�NCe f + (1� !2(Cm +N2Ce)Mm) q = Ce(1� !2CmMm) v (66)

If the transducer equations derived from the equivalent circuit are compared
to those derived from the analytical model (Equations 50 to 53) then the following
equivalences can be found

N =
��0

KC

 
1

1 + �2=KC

!
(67)

Cm =
�2

0

K
:

 
1

1 + �2=KC

!
(68)
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Ce = C(1 + �2=KC) (69)

and
Mm =

M

�2
0

(70)

The first resonance frequency is given by

!2

1
=

1

(Cm +N2Ce)Mm
=

K

M
(71)

which is the resonance frequency for an open circuit actuator q = 0. There is also a
second slightly higher frequency given by

!2

2
=

1

CmMm
=

KC +�2

MC
(72)

which is the resonance frequency for a shorted actuator v = 0. A final but impor-
tant quantity is the coupling factor k which is a measure of the efficiency of the
conversion of electrical energy to mechanical energy. Assuming that a force and
voltage are applied such that u and q are both zero. Then by Equation 63

�NCev = (Cm +N2Ce)f (73)

If a small DC charge �q is applied then by Equation 65

�u = N�q (74)

and the ratio of electrical energy supplied to the actuator to the mechanical energy
supplied by the actuator is

k2 =
�f�u
v�q

=
N2Ce

Cm +N2Ce
=

�2

KC +�2
=

!2

2
� !2

1

!2
2

(75)

6 Design Approximations

When designing an actuator for a given application, we would like to know the
effect of particular choices of model parameters on the performance of the actu-
ator. The equations describing the THUNDER model are moderately complicated
and the effect of varying a parameter such as the thickness of the base layer on a
performance variable such as the displacement per volt, is not readily apparent.

This section discusses a series of approximations or design guidelines that are
useful when selecting actuator parameters for a particular design. In general, we
would like to design a transducer that is matched to mechanical impedance of the
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BBN THUNDER Model 6.1 PZT thickness

medium into which it works. A THUNDER actuator uses the bending process as a
mechanical amplifier to achieve more displacement than a direct strain PZT device,
and so displacement performance parameters tend to be of greater importance
than force performance parameters .

Assuming then that the objective of the designer is to make a THUNDER device
with the best displacement output, the most important performance parameters
are the displacement per coulomb N , the displacement per volt NCe, and the first
resonant frequency w1.

6.1 PZT thickness

In general, a thinner PZT results in greater actuator displacement at the expense
of greater actuator force. In a typical application, displacement is of greater im-
portance that force and so the designer should select the thinnest PZT material
available. The thickness of available PZT wafers is determined both by the manu-
facturing process of the wafer itself and by the need to handle the wafer for subse-
quent processing (as a ceramic PZT is fragile and fractures easily). The thickness of
the PZT chosen for incorporation into a THUNDER device is thus likely to be fixed
by its availability.

6.2 Base Thickness

The optimum thickness of the metal base layer is a complex function of the selec-
tion of materials and thickness of the other layers of the actuator. The effect of
base layer thickness on displacement can be seen by considering its effect on the
bending stiffness B and the induced piezoelectric moment Mp.

B =
Yih

3

i

12
+ Yihiw

2

i (76)

Mp = �wbYbhbd31E3 (77)

and the curvature is the ratio
c = Mp=B (78)

The bending stiffness obviously increases as the base thickness increases. Mp also
increases through the effect of moving the centerline of the PZT xb further from the
bending neutral axis y0. As a rule of thumb, the maximum curvature occurs when

Yaha = Ybhb (79)

and
wa = �wb � hb=3 (80)
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BBN THUNDER Model 6.3 Actuator Length

that is the bending neutral axis is just in the PZT (most of the compression strain of
the PZT is acting on the same side of the neutral axis but no effort is wasted squeez-
ing base material). With this choice of base thickness, useful approximations of B
and Mp are possible. As PZT has a lower modulus than most metals, the base layer
thickness will be smaller than the PZT layer thickness and

B � Ybh
3

b

3
(81)

Similarly,

Mp � h2b
3
Ybd31E3 (82)

and so
c = �Mp

B
� �d31E3

hb
(83)

6.3 Actuator Length

Having selected the PZT and base layer thicknesses, the next step is to choose the
length of the actuator. The displacement output increases with the square of the
length of the actuator and so longer actuators are preferred. However, the first
resonance frequency of the actuator is inversely proportional to the square of the
length of the actuator and, in general we will want to operate the actuator at fre-
quencies below the resonance. At and near the resonance, although the increased
output is attractive, the performance of the actuator is unpredictable and the phase
shift accompanying the resonance makes the actuator difficult to control. The de-
sign choice is then to make the actuator as long as possible such that the operating
bandwidth of the actuator falls below the first resonance.

As the thickest layer, the PZT will also dominate the expression for the surface
density, �ihi � �bhb and so the first resonance frequency can be approximated by

!1 =
�

l2

s
B

�ihi
�= �hbp

3l2

s
Yb
�b

(84)

where the constant � depends on the choice of boundary conditions, bearing in
mind that the stiffness of the actuator will, in practice, depend on the specific de-
tails of both the mounting and the static curvature induced by the thermal pre-
stress.

If !0 is the greatest frequency at which the actuator will be operated, then we
require that

!0 � !1 (85)
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Thus the length of the actuator is given by

l2 � �hbp
3!0

s
Yb
�b

(86)

and so the maximum displacement

umax / cl2 / d31E3

�

!0

s
Yb
�b

(87)

6.4 Transducer Parameters

Using the approximations for B and wb given above, approximations for the trans-
ducer parameters K and � can be found

K � Ybh
3

bA

3
(88)

C =
�33A

hb
(89)

� � YbhbAd31
3

(90)

MCF =
ml4

20
MSS =

ml4

120
(91)

and
!1;CF = 2:6

hb
l2
Yb
hb

!1;SS = 6:3
hb
l2
Yb
hb

(92)

6.5 Circuit Parameters

Using the approximations forK and � given above, approximations for the circuit
parameters can be found

N � �0d31
hbAe33

(93)

The ratio d31=e33 is the g31 constant for the PZT material.

Ce � �33A

hb
(94)

Cm � 3

Ybh3bA
(95)

and
Mm =

M

�20
(96)
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6.6 Static Thermal Curvature

Accurate estimates of the static thermal curvature are difficult as as the eventual
curvature depends on both the shell bending stiffness and the precise details of the
mounting of the actuator,

An approximation for the thermal bending moment is

M� = Ybh
2

b(�a � �b)�=3

where �a and �b are the coefficients of thermal expansion for the base and PZT
layers and � is the temperature (above ambient) at which the actuator adhesive
set. An estimate of the curvature is then

c = M�=B = (�a � �b)�=hb

If the curvature is large then the actuator will be stiffer than predicted by a
factor x where

x �
 
l2(�a � �b)�

h3b�

!2=3

(97)

The bending stiffness B and the stiffness K must be increased and the compliance
Cm must be decreased by this factor.

Notation

B . . . . . . . . bending stiffness

C . . . . . . . . capacitance

Ce . . . . . . . transduction free capacitance

Cm . . . . . . . transduction open circuit compliance

D . . . . . . . . electric displacement

E3 . . . . . . . electric field strength in 3 direction

F . . . . . . . . force

K . . . . . . . . stiffness

M . . . . . . . mass

M . . . . . . . moment

Mb . . . . . . . applied bending line moment

Mm . . . . . . transduction mass

Mp . . . . . . . piezoelectric actuation line moment
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Mtheta . . . . thermal actuation line moment

N . . . . . . . . transduction constant

R . . . . . . . . radius of curvature

S . . . . . . . . mechanical strain

S0 . . . . . . . uniform or static strain

T1 . . . . . . . . mechanical stress in 1 direction

Ti . . . . . . . . mechanical stress in 1 direction in layer i

Y . . . . . . . . mechanical modulus

Yi . . . . . . . . mechanical modulus of layer i

a . . . . . . . . . radius

c . . . . . . . . . curvature

d31 . . . . . . . piezoelectric constant

f . . . . . . . . force

hi . . . . . . . . thickness of layer i

l . . . . . . . . . length

q . . . . . . . . . charge

u . . . . . . . . actuator displacement

v . . . . . . . . . voltage

w . . . . . . . . width

xi . . . . . . . . centerline of layer i

y0 . . . . . . . . bending neutral axis

yi . . . . . . . . upper boundary of layer i

�i . . . . . . . . coefficient of thermal expansion of layer i

� . . . . . . . . boundary condition frequency constant

�33 . . . . . . . dielectric constant

ŷ0 . . . . . . . . effective neutral axis

!1 . . . . . . . first natural frequency

� . . . . . . . . mode shape

�i . . . . . . . . material density of layer i

� . . . . . . . . Poisson’s ratio

� . . . . . . . . . temperature above ambient at which adhesive set

� . . . . . . . . . transduction constant
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